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Pattern selection and stabilization in an annular CO2 laser
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Abstract. The formation and stabilization of spatio-temporal patterns in an annular CO2 laser is studied.
We give experimental and numerical evidence of the role of a small spatial perturbation (consisting of a
thin metallic wire inserted in the optical cavity) in the selection and stabilization of patterns.

PACS. 42.55.-f Lasers – 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities,
optical chaos and complexity, and optical spatio-temporal dynamics – 42.65.-k Nonlinear optics

1 Introduction

Pattern formation and spatio-temporal dynamics are
widely investigated in many different areas, including op-
tics, hydrodynamics, granular media, and chemical reac-
tions [1]. In particular, nonlinear optics provides excel-
lent examples of this kind of phenomena in a large variety
of systems, such as liquid crystals [2], atomic vapors [3],
organic films [4], photorefractive materials [5], and wide
aperture lasers [6–10]. Usually, in this type of systems,
laser action occurs simultaneously for a considerable num-
ber of transverse modes characterized by large values of
the radial and azimuthal indices; this leads to a complex
spatio-temporal pattern difficult to be analyzed. Previ-
ous works performed using CO2 lasers emitting annularly
symmetric intensity distributions [9,10], have studied the
role of infinitesimal symmetry imperfections of the sys-
tem on the observed spatio-temporal dynamics. Huyet
et al. [9] gave evidence of their influence on the dynam-
ics of structures with high azimuthal index. On the other
hand, Labate et al. [10] analyzed the case of patterns with
small azimuthal index near threshold, whose temporal be-
haviour was theoretically explained as a Takens-Bogdanov
bifurcation. Both of them reported transitions between
different patterns, as well as temporal oscillations of the
intensity in some structures: periodic oscillations in [9],
and aperiodic fluctuations determined by noise in [10].

Further interesting aspects of this symmetry can be
investigated if the annular geometry is selected by using
a toroidal mirror as one of the cavity mirrors. This so-
lution provides a stable resonator, whereas the stability
condition is not always fulfilled in a spherical resonator
when spatial filters in the form of circular obstructions
are inserted on the optical axis. With regard to the spatial
structures, the annular configuration with toroidal mirror
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enables laser action for those families of patterns preserv-
ing the resonator symmetry, among all the modes present
in a wide aperture laser. Furthermore, when the ratio of
the external to the internal torus diameter is sufficiently
close to one, there is only one relevant geometrical vari-
able, namely, the azimuthal one. In this way, quasi one-
dimensional patterns with periodical boundary conditions
can be obtained. Finally, concerning the spatio-temporal
evolution, the annular cavity gives the possibility of study-
ing interesting phenomena, such as the highly irregular
behaviours which can emerge when two or more patterns
with different (and large) azimuthal indices coexist.

In this framework, we propose a pattern selection
method based on the introduction of a weak spatial per-
turbation in the optical cavity. This technique, recently
suggested by Wang et al. [11], achieves the selection and
stabilization of two-dimensional patterns. In our particu-
lar case, the spatial perturbation consists of a thin metallic
wire introduced in the optical cavity. Being the diameter
of the wire a few times the laser wavelength, it acts as
a diffracting obstacle which influences the eigenvalues of
the different cavity modes. This method has been success-
fully implemented in wide aperture CO2 lasers to select
and stabilize hexagonal patterns [12]. Of course, the use
of periodic spatial perturbations with no time dependence
is by no means a method for controlling chaos in the sense
originally proposed by Ott et al. [13] and later extended to
the spatial-time domain [14]. However, it is useful when-
ever the system dynamics evolves on so fast time scales
that a feedback can not be implemented.

Summarizing, we report on temporal evolution, selec-
tion and stabilization of annular patterns with high az-
imuthal index, in a CO2 laser with a toroidal mirror. The
paper is organized as follows: in Section 2, the experi-
mental setup is described, and the experimental results
presented. These experimental results are confirmed by
numerical simulations, performed following the Fox and
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Fig. 1. Outline of the experimental setup. From right to left:
M1 = toroidal mirror, W = transparent window, M2 = outcou-
pler, PZ = piezo translator, BS = beam splitter, PM = power
meter, and FD = fast detector.

Li procedure [15]; the numerical results are reported in
Section 3. Finally, conclusions are drawn in Section 4.

2 Experimental setup and results

The experimental setup is sketched in Figure 1. It con-
sists of a wide aperture CO2 laser with a Fabry-Perot con-
figuration. The pyrex discharge tube of the laser (50 cm
length, 3.54 cm internal diameter) is closed at one end by
an antireflection ZnSe flat window (99.5% transmittance
at normal incidence) and at the other end by a toroidal
copper mirror (1150 mm radius of curvature; the external
and internal diameters of its reflective part are 26 mm and
8 mm, respectively).

A spherical ZnSe outcoupler (38 mm diameter, 3 m ra-
dius of curvature, 90% reflection) closes the 87-cm-length
Fabry-Perot cavity. This outcoupler is mounted on a piezo
translator in order to adjust the cavity detuning.

The pumping of the active medium (4.5% CO2, 82%
He, 13.5% N2, at an average pressure of 25 mbar) is pro-
vided by a high-voltage DC discharge. The electrodes have
been purposely designed to preserve the cylindrical sym-
metry of the cavity.

A power meter and a HgxCd1−xTe fast detector have
been used to measure the power of the output beam and
its temporal evolution in a given point of the pattern,
respectively.

In order to estimate the number of modes sustained
by the cavity, we have to consider an “equivalent Fresnel
number” suitable for the annular geometry of our system.
Annular resonators have been analyzed for the case where
the ratio between the internal and external radii of the
mirror (ri/re) is very close to one [16]. Under this condi-
tion, the resonator is equivalent to an infinite strip res-
onator, where the radial and azimuthal variables are un-
coupled. Such an approximation can not be applied to our
system: indeed, we have experimentally observed that the
mean diameter of the patterns increases with the number
of lobes. A rough estimation of the Fresnel number in our
configuration could be (r2

e − r2
i )/λL (λ = wavelength of

the laser, L = cavity length) that, being over 16, assures
the presence of a considerable amount of cavity modes.

The annular symmetry of the laser determines the ge-
ometry of the resulting patterns. Continuous rings have
been observed, as well as discrete structures formed by
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Fig. 2. Images of experimental patterns obtained on a thermal
image plate placed at 11 cm from the outcoupler. (a) 24-lobe
pattern, whose diameter is about 20 mm; (b) continuous pat-
tern related to the previous structure (with the same diame-
ter); (c) 32-lobe pattern; (d) 36-lobe pattern: the diameter has
increased to near 22 mm.

an even number of lobes, and patterns showing both con-
tinuous and discrete contributions. In our experimental
situation, the number of lobes varies from 22 to 36. Some
of these structures are shown in Figure 2, where it can be
noticed that the diameter of the patterns increases with
the number of lobes.

Using the HgxCd1−xTe fast detector, we have verified
that both continuous and discrete structures can display
oscillating and non-oscillating behaviours, the former with
frequencies ranging from 20 to 200 kHz approximately.
This kind of oscillations have been already reported in pre-
vious works [7–10], where the patterns were interpreted as
superpositions of azimuthal traveling waves (TW). Left-
and right-azimuthal TW with the same amplitude give rise
to pure standing-wave (SW) patterns, showing a multi-
lobe configuration. When these two TW have different am-
plitudes, they can lead to a mixed structure consisting of
a continuous ring (TW) with a superimposed multi-mode
pattern, that can present temporal oscillations. The laser
emission has been found to be linearly polarized. This fact
simplifies theoretical approximations to the problem, al-
lowing the use of scalar formulations.

In order to characterize the laser behaviour, we have
varied the cavity detuning (Fig. 3). Without any external
perturbation, when the resonance condition corresponding
to the maximum output intensity is approached, the dis-
crete 24-lobe pattern loses its stability and we observe the
appearance of a continuous pattern or the superposition
of both. A further increase of the cavity detuning leads
(once surpassed the maximum) to the condition where
competition with other modes, and consequently tempo-
ral instabilities appear. The data of Figures 4a and 4b
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Fig. 3. Stability curves obtained for a current of 14.5 mA,
at an average pressure of 25.5 mbar. The three curves are
represented for detuning displacements from the position of
the maximum intensity: the first one (black-filled symbols) has
been obtained without perturbations, and the other two with
wires of 100 (gray-filled symbols) and 50 µm (+ and ∗ sym-
bols), respectively. Legend notation: (wx.)l(n), where wx. =
with a x µm-diameter wire (just in case there is a wire); l =
d (discrete), c (continuous), tr (transitions between more than
two patterns); n = number of lobes of the pattern, cn = n lobes
superimposed to a continuous pattern.

were recorded during the interaction between more than
two different multi-lobe patterns: Figure 4a shows the
irregular behaviour of the intensity in a point of the pat-
tern, whereas in the corresponding power spectrum of Fig-
ure 4b, it can be noticed the presence of subharmonics of
the fundamental frequency.

The selection of multi-lobe patterns, and hence the
disappearance of the continuous distribution and even of
irregular behaviours, can be forced by making use of a
thin metallic wire (50 or 100 µm diameter, placed 11 cm
far from the outcoupler inside the cavity). As can be seen
in Figure 3, the introduction of the wire enlarges consider-
ably the range of stability of the 24-lobe mode, introducing
only nearly negligible “side effects” such as small inten-
sity losses (5–10%). Another effect is a slight displacement
(smaller than 10 MHz) in the detuning value related to the
maximum intensity, that has been corrected in the figure
by shifting the curves in order to place the maxima for
the same detuning value. Notice that the selected pattern
remains stable approximately in the same range where the
different versions of the structure (discrete or continuous,
with or without oscillations) were present before the in-
sertion of the spatial perturbation. Moreover, the weak
spatial perturbation does not give rise to new patterns,
or to modified versions of the previously observed ones;
indeed, it stabilizes the same multi-lobe modes observed
without the wire. Furthermore, concerning the temporal
evolution, this method assures the elimination of tempo-
ral oscillations in the resulting patterns, and even in the
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Fig. 4. Irregular behaviour resulting from interactions be-
tween more than two multi-lobe patterns. (a) Strongly irregu-
lar oscillations showing period windows P6 and P8. (b) Power
spectrum showing the fundamental frequency (f ≈ 53 kHz)
together with subharmonic peaks at f/3 and f/2.

transitions between them. Thus, the stability domain of
the multi-lobe mode is extended up to the appearance
of another laser mode with a different azimuthal index,
avoiding irregular temporal regimes.

Finally, it is interesting to remark that the insertion
of masks with a different number of wires in diametri-
cal positions enables the selection of more specific pat-
terns, namely, those whose lobe-number is a multiple of
the number of radial obstacles in the mask [11,12]. For
example, the insertion inside the optical cavity of a mask
of 6 equidistant radial partitions (3 wires of 50-µm diame-
ter at 60◦), leads to the stabilization of 24-, 30- or 36-lobe
patterns; whereas a mask of 7 wires (14 angular partitions)
enables only the presence of the 28-lobe pattern.

3 Numerical analysis

A numerical analysis based on the Fox and Li method [15]
confirms the previous results. The simulations have been
performed adopting exactly the same geometrical config-
uration of the experiment. The transverse plane is repre-
sented by a square grid of 512× 512 pixels (with 100-µm-
width pixels) and propagation within the laser cavity has
been accounted for via Fourier transforms [17]. We also
neglected the dynamical behavior of the active medium,
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Fig. 5. Numerical simulations. Representation of the
transverse-plane intensity of the output beam (after 500 round
trips) for the following initial conditions: (a) uniform inten-
sity and phase distributions. Losses = 0.005%. (b) Uniform
intensity, and phase alternating between 0 and π in 24 equal
angular sectors. Both with and without the wire, the resulting
pattern (the 24-lobe one) and the losses (0.12%) are the same.
(c) 32-lobe structure reproduced using the same method (with
32 angular sectors), with or without the wire. Losses = 0.26%.
(d) Uniform intensity and phase distribution. The effect of a
1-pixel obstacle is included. The continuous pattern is not ex-
actly reproduced. The losses in the new structure are 0.74%.

replacing it with a constant amplification factor. On the
one hand, such an approximation does not allow to study
the effect of the detuning (and thus different cavity eigen-
modes are selected in our calculations by appropriately
choosing the initial condition for the laser intensity and
phase distributions). On the other hand, like in the exper-
iment (where a diffractive perturbation was introduced in
a well defined transverse plane), interesting results can be
obtained on the role played by the wire in changing the
cavity eigenvalues of individual eigenmodes.

The numerical results are summarized in Figure 5
(convergence has been always reached after 500 cavity
round trips). Starting with intensity and phase uniformly
distributed in the transverse plane as initial conditions,
the continuous pattern is found, with uniform phase dis-
tribution (see Fig. 5a); the calculated cavity losses, that
is, the mode eigenvalue, for this configuration are 0.005%.
The 24-lobe pattern can be studied with initial uniform in-
tensity distribution, and phase set alternately to zero and
π in 24 equal angular-sectors (see Fig. 5b). In this case,
cavity losses equal to 0.12% have been obtained. Similar
structures with a different number of lobes can be simu-

lated by changing the number of partitions in the initial
phase distribution (see Fig. 5c, consisting of 32 lobes, with
losses reaching 0.26%). Note that the above per cent val-
ues are very small since, considering as ideal all optical
elements, we have neglected most of the losses present
in the experiment, such as non perfect reflectivity of the
mirrors. Anyway, they are not relevant for our treatment
because they are uniformly distributed in the transverse
directions and thus do not contribute to mode selection.
It is clear that, in a real unperturbed cavity where all the
structures of Figure 5a and 5c are eigenmodes, the contin-
uous distribution would be automatically selected since it
exploits the lowest losses.

Next, a “wire” of one-pixel width (100 µm of diameter)
has been included in the simulation algorithm. Initial ho-
mogeneous amplitude and phase distributions lead to the
pattern shown in Figure 5d, that is, the continuous pat-
tern splits into two parts. Anyway the cavity losses, clearly
affected by the presence of the wire, reach 0.74%. On
the contrary, the 24-lobe (n-lobe) mode maintains exactly
the same cavity losses than without the wire. Thus, with
the wire, this last pattern has lower losses than the one
shown in Figure 5d, and it will be consequently preferred.
Although a quantitative comparison with the diffraction
losses of the experimental cavity is not possible, this re-
sult agrees with the observed selection of the multi-lobe
patterns when weak spatial perturbations are introduced.

4 Conclusions

In this paper, we have reported on the formation and selec-
tion of patterns on an annular CO2 laser. Continuous and
discrete structures have been observed, as well as super-
positions of both configurations. The highest power values
correspond to the continuous, or continuous with lobes
structures, whereas the discrete structures are formed
when the cavity losses are increased.

We have verified that the introduction of a weak spatial
perturbation inside the optical cavity (a metallic wire of
50 or 100 µm) selects and stabilizes a multi-lobe pattern,
increasing its stability range and avoiding temporal oscil-
lations. Concerning laser applications, the stabilization of
patterns with azimuthal dependence does not represent a
limitation on the uniformity when the beam is focused. A
suitable phase-filtering process on the output beam can
reduce the azimuthal modulation in the far-field distribu-
tion [18].

Numerical simulations based on the Fox and Li
method, agree qualitatively with the experimental results.
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